Eighth International Accelerator School for Linear Colliders – Curriculum (v.2, 8/13/2013)

December 4 – 15, 2013, Rixos Hotel, Antalya, Turkey

Hosted by the Institute of Accelerator Technologies (IAT) of Ankara University

Daily Schedule

Breakfast 07:30 – 09:00

Morning 09:00 - 12:30, including ½-hour break

Lunch 12:30 – 14:00

Afternoon 14:00 – 17:30, including ½-hour break

Dinner 18:00 – 19:00 Tutorial & homework 19:00 – 22:00

<u>List of Courses</u> (black: required, red and blue: elective)

	Morning	Afternoon	Evening
December 4		Arrival, registration	Reception
December 5	Introduction to physics & future accelerators	ILC	Tutorial & homework
December 6	CLIC	Joint lecture: Linac basics	Tutorial & homework
December 7	Joint lecture: Instrumentation basics	Course A: Accelerator physics Course B: Accelerator technology	Tutorial & homework
December 8	Course A: Accelerator physics Course B: Accelerator technology Excursion		Tutorial & homework
December 9	Course A: Accelerator physics Course B: Accelerator technology		Tutorial & homework
December 10	Course A: Accelerator physics Course B: Accelerator technology		Tutorial & homework
December 11	Course A: Accelerator physics Course B: Accelerator technology	Excursion	Tutorial & homework
December 12	Course A: Accelerator physics Course B: Accelerator technology		Tutorial & homework
December 13	Course A: Accelerator physics Course B: Accelerator technology		Tutorial & homework
December 14	Course A: Accelerator physics Course B: Accelerator technology	Study time	Study time
December 15	Final exam	Free time	Banquet; Student Award Ceremony
December 16	Departure		

Program

	Thursday, December 5	Friday, December 6	Saturday, December 7	Sunday, December 8
Morning	Inauguration	Lecture I3 – CLIC (3 hrs)	Joint lecture AB2 –	Course A: Accelerator physics
09:00 - 12:30	Welcome – O Yavas (IAT)	Frank Tecker (CERN)	Instrumentation basics (3 hrs)	Lecture A1 – Linac (cont'd)
	Introduction – W Chou (Fermilab)	Klystron vs. beam driven acceleration	Hermann Schmickler (CERN)	Daniel Schulte (CERN)
	Lecture I1 – Introduction (3 hrs)	CLIC layout		Course B: Accelerator technology
	Kaoru Yokoya (KEK)	Parameter choices &		Lecture B1 – Room temperature
	Tera scale physics	optimization		RF (cont'd)
	Overview of future	Driver beam stability		Walter Wuensch (CERN)
	accelerators for Tera scale	 Comparison of the CLIC 		
	physics (ILC, CLIC, muon	and ILC		
	collider, γγ collider, LHeC,	 Technical challenges 		
	TLEP, new acceleration			
	technologies)			
Afternoon	Lecture I2 – ILC (3 hrs)	Joint lecture AB1 – Linac basics (3	Course A: Accelerator physics	Excursion
14:00 – 17:30	Kaoru Yokoya (KEK)	hrs)	Lecture A1 – Linac (9 hrs)	
	 e- and e+ sources 	Daniel Schulte (CERN)	Daniel Schulte (CERN)	
	 Bunch compressors and 			
	spin rotators		Course B: Accelerator technology	
	 Damping rings 		Lecture B1 – Room temperature	
	 Main linac 		RF (12 hrs)	
	 Beam delivery system 		Walter Wuensch (CERN)	
	 Civil construction issues 			
Evening 19:00 – 22:00	Tutorial & homework	Tutorial & homework	Tutorial & homework	Tutorial & homework

Program (cont'd)

	Monday, December 9	Tuesday, December 10	Wednessday, December 11	Thursday, December 12
Morning	Course A: Accelerator physics	Course A: Accelerator physics	Course A: Accelerator physics	Course A: Accelerator physics
09:00 - 12:30	Lecture A1 – Linac (cont'd)	Lecture A3a – Damping rings (12	Lecture A3a – Damping rings	Lecture A3a – Damping rings
	Daniel Schulte (CERN)	hrs)	(cont'd)	(cont'd)
		Yannis Papaphillipou (CERN)	Yannis Papaphillipou (CERN)	Yannis Papaphillipou (CERN)
	Course B: Accelerator technology			
	Lecture B1 – Room temperature	Course B: Accelerator technology	Course B: Accelerator technology	Course B: Accelerator technology
	RF (cont'd)	Lecture B1 – Room temperature	Lecture B2 – Superconducting RF	Lecture B2 – Superconducting RF
	Walter Wuensch (CERN)	RF (cont'd)	(cont'd)	(cont'd)
		Walter Wuensch (CERN)	Takayuki Saeki (KEK)	Takayuki Saeki (KEK)
Afternoon	Course A: Accelerator physics	Course A: Accelerator physics	Excursion	Course A: Accelerator physics
14:00 - 17:30	Lecture A2 – Sources (6 hrs)	Lecture A2 – Sources (cont'd)		Lecture A3a – Damping rings
	Masao Kuriki (Hiroshima Univ.)	Masao Kuriki (Hiroshima Univ.)		(cont'd)
				Yannis Papaphillipou (CERN)
	Course B: Accelerator technology	Course B: Accelerator technology		
	Lecture B2 – Superconducting RF	Lecture B2 – Superconducting RF		Course B: Accelerator technology
	(12 hrs)	(cont'd)		Lecture B3 – Instrumentation (3
	Takayuki Saeki (KEK)	Takayuki Saeki (KEK)		hrs)
				Hermann Schmickler (CERN)
Evening 19:00 – 22:00	Tutorial & homework	Tutorial & homework	Tutorial & homework	Tutorial & homework

	Friday, December 13	Saturday, December 14	Sunday, December 15	Monday, December 16
Morning 09:00 – 12:30	Course A: Accelerator physics Lecture A3b – Ring colliders (3 hrs) Yannis Papaphillipou (CERN) Course B: Accelerator technology Lecture B4 – LLRF & high power RF (9 hrs) Stefan Simrock (ITER)	Course A: Accelerator physics Lecture A4 – Beam delivery system and beam-beam (cont'd) Andrei Seryi (John Adams Inst.) Course B: Accelerator technology Lecture B4 – LLRF & high power RF (cont'd) Stefan Simrock (ITER)	08:00 – 12:30 Final exam (4.5 hrs)	Departure
Afternoon 14:00 – 17:30	Course A: Accelerator physics Lecture A4 – Beam delivery system and beam-beam (6 hrs) Andrei Seryi (John Adams Inst.) Course B: Accelerator technology Lecture B4 – LLRF & high power RF (cont'd) Stefan Simrock (ITER)	Study time	Free time	
Evening 19:00 – 22:00	Tutorial & homework	Study time	Banquet at 19:00; Student Award Ceremony	

Notes on the Program:

- 1. There are a total of 11 school days in this year's program, excluding the arrival day (December 4) and the departure day (December 16). The time is divided as follows: 2-1/2 days for required courses, 6 days for elective courses, two 1/2 day for excursions, 1/2 day for study time and a final examination day.
- 2. The required course consists of five lectures: introduction, ILC, CLIC, linac basics and instrumentation basics. Every student must take this course.
- 3. There are two elective courses: Course A (the red course) is accelerator physics, Course B (the blue course) is accelerator technology. They will run in parallel. Each student will choose one of these.
- 4. The accelerator physics course consists of lectures on four topics: (1) linac, (2) sources, (3) damping rings and ring colliders, and (4) beam delivery system and beam-beam effects.
- 5. The accelerator technology course also consists of lectures on four topics: (1) room temperature RF, (2) superconducting RF, (3) instrumentation, and (4) LLRF and high power RF.
- 6. There will be homework assignments, but homework is not counted in the grade. There will be a final examination. Some of the exam problems will be taken from variations of the homework assignments. The exam papers will be graded immediately after the exam and results announced in the evening of December 15 at the student award ceremony.
- 7. There is a tutorial and homework period every evening. It is part of the curriculum and students are required to attend. Lecturers will be available in the evening of their lecture day during this period.
- 8. Lecturers have been asked to cover the basics as well as possible. Their teaching material will be made available online to the students ahead of time (a few weeks prior to the school). Students are strongly encouraged to study this material prior to the beginning of the school.
- 9. Lecturers of the elective courses are required to provide lecture syllabus as soon as possible in order to help students make their selection.
- 10. All lecturers are responsible for the design of homework and exam problems as well as the answer sheet. They are also responsible for grading the exams.
- 11. The award ceremony will honor the top (~10) students based on their exam scores.